Toward Total Synthesis of Yohimbine and Reserpine Alkaloids; Part 1. An Improved Synthesis of *cis*-5, 8-Dihydroxy-1, 4, 5, 8, 9,10-hexahydronaphthalene-1, 8-lactone *via* Selective Reduction of the Conjugated Ketone with Zn (BH₄) ₂

Yong Ye LI, Mei XU, Fen Er CHEN*

Department of Chemistry, Fudan University, Shanghai 200433

Abstract: An improved and high-yielding synthesis of *cis-*5, 8-dihydroxy-1, 4, 5, 8, 9, 10- hexahydronaphthalene-1,8-lactone **7**, an intermediate for (-)-reserpine **1** is presented. The conjugated ketone **5** was regioselectively reduced to afford lactone **7** with zinc borohydride formed *in situ* from KBH₄ and ZnCl₂ in THF.

Keywords: (-)-Reserpine, lactone, zinc borohydride, reduction, synthesis.

cis-5, 8-Dihydroxy-1, 4, 5, 8, 9, 10-hexahydronaphthalene-1, 8-lactone **7** is the key intermediate to build E ring **2** possessing five chiral centers in total synthesis of (-)-reserpine **1**^{1,2}. In 1958, Woodward firstly reported an artful route to the synthesis of (-)-reserpine from the acid **4**. One major drawback of this promising approach is the low yield obtained in the synthesis of the required lactone **7**. Herein, we described an efficient and improved method for the synthesis of **7** as shown in **Scheme 1**.

Figure 1

The conjugated ketone **5** was obtained from benzoquinone and the ester **3** prepared through the condensation of monoethyl malonate with acrolein according to the modified Rodriguez procedure³. Treatment of monoethyl malonate with acrolein in dry pyridine at room temperature for 24 h afforded crude **3** in 82% yield (including 92% pure product detected by GC-MS). **3** was used without any purification for the next step, avoiding

^{*} E-mail: rfchen@fudan.edu.cn

the use of an expensive catalyst dimethylaminopyridine $(DMAP)^3$. Diels-Alder reaction of benzoquinone with the ester **3** was carried out at N_2 atmosphere for 24 h to give the ketone **5** in 45% yield. It is interesting that if the reaction proceeded without N_2 , the yield decreased to 15%.

Scheme 1

Selective reduction of the conjugated ketone **5** afforded the corresponding unsaturated diol **6**, which is the key intermediate to prepare lactone **7**. Considerable progress has been made in the development of various reducing agents for regioselective 1,2-reduction of the conjugated ketones⁴. We tried the various reducing agents and different reaction conditions (**Table 1**) for enhancing the chemoselectivity of this reaction.

Scheme 2

When we followed the Woodward procedure² to prepare **7**, the Meerwein-Porndorf-Verley (MPV) reduction of the ketone **5** resulted in the formation of the aromatic isomer **11** as the main product (Entry 1). When the reaction was carried out at 50°C⁶, the ketone **5** was reduced to give 1,2-reduction product **8** and aromatic isomer **11** in ratio of 9:1(Entry 2). When the ketone **8**, isolated by crystallization, was further reduced in the same conditions, no required **7** was obtained and the ketone **8** was recovered unchanged (**Scheme 2**). Several reducing agents, such as NaBH₄, KBH₄, 9-BBN, BH₃-SMe₂, were tested⁷⁻⁹. However, all these approaches were failed to obtain **7**(Entry 3-6).

Table 1 The Reduction of Ketone 5 with various Reducing agents

Entry	Reducing agent (Equiv.)	Solvent	Temp.	Time (h)	Content of Products (%) ^a				
					7	8	9	10	11
1	$Al[OCH(CH_3)]_3(3)$	Iso-PrOH	80/N ₂	2	_	10	_	_	90
2	$Al[OCH(CH_3)]_3(3)$	Iso-PrOH	50/N ₂	3	-	88	-	-	10
3	NaBH ₄ (0.33)	NEt ₃ /MeOH	$-5/N_2$	1	-	57	10	10	_
4	KBH ₄ (2)	MeOH	r.t.	6	_	_	10	50	_
5	9-BBN/THF ^b (1)	THF	r.t.	5		Complicated products			
6	BH ₃ -SMe ₂ /THF ^c (1)	THF	0	2		Complicated products			
7	$Zn (BH_4)_2$ /ether ^d (1)	C_6H_6	r.t.	5	_	77	_	_	_
8	$Zn (BH_4)_2$ /ether ^d (2)	C_2H_5OH	r.t.	5	_	90	_	_	_
9	$Zn (BH_4)_2/THF^e (1)$	THF	r.t.	2	40	50	_	_	_
10	$Zn (BH_4)_2/THF^e (1)$	THF	r.t.	5	90	_	-	_	_
11	Zn (BH ₄) ₂ /THF ^e (1)	THF	r.t.	10	75	_	_	_	_

^a The content of the products was detected by GC-MS.

Table 1 showed that the best result was obtained by using Zn (BH₄) $_2$ as the reducing agent in THF at r.t. for 5 h (Entry 10). The yield of the crude product **7** was 83%, no appreciable 1,4-reduction products or aromatic isomer were observed. The reaction mixture was added water to quench the reaction. After extraction with ethyl acetate, the solvent was removed to afford crude product **7** in 83% yield, purity was 90% detected by GC-MS. When the reaction carried out for longer time (Entry 11), the yield was decreased due to increase the by-products. It is worthy of mention that the reaction was affected significantly by the solvents used. The ketone **5** was converted solely to **8** if the reaction was carried out in ether⁵ with Zn (BH₄) $_2$ (Entry 7,8), only in THF the required product **7** can be obtained in high yield.

In summary, an improved synthesis of lactone 7 in 25% overall yield is developed. And the reduction of the conjugated ketone 5 with Zn $(BH_4)_2$ in THF showed high chemoselectivity.

 $^{^{\}rm b}$ 0.5 mol/L solution; $^{\rm c}$ 2.0 mol/L solution; $^{\rm d}$ 0.15 mol/L solution; $^{\rm e}$ 0.5 mol/L solution

References and Notes

- 1. R. B. Woodward, Tetrahedron, 1958, 2, 1.
- 2. R. B. Woodward, Belmont, Mass., US Patent 2,883,384, 1956.
- 3. J. Rodriguez, B. Waegell, Synthsis, 1988, 7, 534.
- 4. B. C. Ranu, et al., J. Org. Chem., 1991, 56, 4796.
- 5. T. Li, Yu Lin Wu, J. Am. Chem. Soc., 1981, 103, 7007.
- 6. E. Adlerova, L. Blaha, et al., Collection Czechoslov. Chem. Commun., 1960, 25, 221.
- 7. B. C. Ranu, Synlett, 1993, 885.
- 8. J. Warnant, Neuilly, and J. Prost-Marechal, US Patent 2,983,753, 1957.
- 9. S. Krishnamurthy, H. C. Brown, J. Org. Chem., 1977, 42, 1197.
- 10. Compound 5: white solid, $C_{13}H_{14}O_4$, Mp 110-112°C, 1H NMR (500MHz, CDCl₃, δ ppm): 1.25(t, 3H, J=7.1 Hz), 2.13(m, 1H), 2.32(m, 1H), 3.22(m, 1H), 3.27(m, 1H), 4.04(m, 1H), 4.22(q, 2H, J=7.1 Hz), 5.73(m, 1H), 6.23(m, 1H), 6.60(d, 1H, J=10.3 Hz), 6.70(d, 1H, J=10.3 Hz), EI MS (m/z) 234 (M^+).
- 11. Compound 7: white foam, $C_{11}H_{12}O_3$, 1H NMR (500MHz, DMSO- d_6 , δ ppm): 1.78(m, 1H), 2.02(m, 1H), 2.05(m, 1H), 2.08(m, 1H), 2.10(m, 1H), 2.35(m, 1H), 3.40(m, 1H), 4.00(m, 1H), 4.90(m, 1H), 5.12(m, 1H), 5.55(m, 1H), 6.00(m, 1H), EI MS (m/z) 192 (M^+).
- 12. Compound **8**: white solid, $C_{13}H_{16}O_4$, ¹H NMR (500MHz, CDCl₃, δ ppm): 1.25(t, 3H, J=7.1 Hz), 2.07(m, 1H), 2.18(m, 1H), 2.87(m, 1H), 3.13(m, 1H), 3.46(m, 1H), 4.21(q, 2H, J=7.1 Hz), 4.98(m, 1H), 5.4(s, OH), 5.72(m, 1H), 5.94(m, 1H), 6.15(m, 1H), 6.68(m, 1H), EI MS (m/z) 236 (M^+).
- 13. Compound **9**: $C_{13}H_{18}O_4$, 1H NMR (500MHz, CDCl₃, δ ppm): 1.15(t, 3H, J=7.1 Hz), 1.27(m, 1H), 1.40(m, 1H), 1.65(m 1H), 1.76(m, 1H), 2.00(m, 1H), 2.14(m, 1H), 2.79(m, 1H), 3.03(m, 1H), 3.58(s, OH), 4.00(q, 2H, J=7.1 Hz), 4.38(m, 1H), 4.42(m, 1H), 5.33(m, 1H), 5.80(m, 1H), EI MS (m/z) 238 (M^+).
- 14. Compound **10**: $C_{13}H_{20}O_4$, ¹H NMR (500MHz, CDCl₃, δ ppm): 1.16(t, 3H, J=7.1 Hz), 1.27(m, 1H), 1.40(m, 1H), 1.47(m, 1H), 1.65(m 1H), 1.67(m, 1H), 1.75(m, 1H), 2.00(m, 1H), 2.18(m, 1H), 2.79(m, 1H), 3.06(m, 1H), 3.55(s, OH), 3.98(q, 2H, J=7.1 Hz), 4.38(m, 1H), 4.42(m, 1H), 5.33(m, 1H), 5.80(m, 1H), EI MS (m/z) 240 (M⁺).
- 1H), 5.33(m, 1H), 5.80(m, 1H), EI MS (*m/z*) 240 (M⁺).
 15. Compound 11: white solid, C₁₄H₁₆O₄, Mp 158-162°C, ¹H NMR (500MHz, DMSO-*d₆*, δ ppm): 1.15(dd, 6H, J=6.2 Hz), 3.10(m, 1H), 3.20(m, 1H), 4.22(m, 1H), 4.83(m, 1H), 5.80(m, 1H), 6.10(m, 1H), 6.44(d, 1H, J=8.5 Hz), 6.52(d, 1H, J=8.5 Hz), 8.63(s, OH), 8.75(s, OH), EI MS (*m/z*) 248 (M⁺).

Received 24 February, 2003